Automatic Classification of Facial Morphology for Medical Applications

نویسندگان

  • Hawraa Abbas
  • Yulia Hicks
  • A. David Marshall
چکیده

Facial morphology measurement and classification play important role in the face anthropometry of many medical applications. This usually involves the investigation of medical abnormalities where specific facial features are studied by taking a number of measurements of the facial area under investigation. The measurements are often obtained from the threedimensional (3D) scans of the faces; however, the measurements are often made manually, which is tedious and time consuming process. Moreover, in gene related studies thousands of measurements may be necessary in order to find statistically significant relationships between facial features and genes. Normative studies, from which typical populous models can be built, also require many measurements. Thus an automatic method to extract morphological measurements and interpret them is desirable. In this article, an automatic method for classification of facial morphology on the basis of a number of geometric measurements obtained automatically from 3D facial scans is presented. Among different facial features the philtrum, which is the vertical groove extending from the nose to the upper lip and the lip area, plays an important role in defining the interaction between the genes and craniofacial anomalies such as, for example, cleft lip and palate. In this paper, geometric features are analysed for their suitability to classify philtrum into three classes previously proposed by medical experts. Moreover, further analysis is conducted to assess the best number of classes to model the underlying data distribution from the point of view of classification accuracy. The obtained classification results are compared with the ground truth manual labelling of 3D face meshes provided by a medical expert. The dataset used for this research is taken from ALSPAC dataset and consists of 1000 3D face meshes. The proposed method achieves classification accuracy of 97% for this data set using the Mean, Minimum and Maximum curvature features in combination. © 2015 The Authors. Published by Elsevier B.V. Peer-review under responsibility of KES International. * Corresponding author. Tel.: +447825885274; E-mail address: [email protected] he Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of KES International 1650 Hawraa Abbas et al. / Procedia Computer Science 60 ( 2015 ) 1649 – 1658

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Face Recognition via Local Directional Patterns

Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...

متن کامل

Facial Expression Recognition Based on Anatomical Structure of Human Face

Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...

متن کامل

Body Mass Index Classification based on Facial Features using Machine Learning Algorithms for utilizing in Telemedicine

Background and Objectives: Due to the impact of controlling BMI on life, BMI classification based on facial features can be used for developing Telemedicine systems and eliminating the limitations of measuring tools, especially for paralyzed people. So that physicians can help people online during the Covid-19 pandemic. Method: In this study, new features and some previous work features were e...

متن کامل

A COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM

This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...

متن کامل

Kohonen Self Organizing for Automatic Identification of Cartographic Objects

Automatic identification and localization of cartographic objects in aerial and satellite images have gained increasing attention in recent years in digital photogrammetry and remote sensing. Although the automatic extraction of man made objects in essence is still an unresolved issue, the man made objects can be extracted from aerial photos and satellite images. Recently, the high-resolution s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015